ar X iv : 0 81 0 . 23 57 v 1 [ m at h - ph ] 1 4 O ct 2 00 8 PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES

نویسنده

  • XIAO ZHANG
چکیده

Noncommutative differential geometry over the Moyal algebra is developed following an algebraic approach. It is then applied to investigate embedded noncommutative spaces. We explicitly construct the projective modules corresponding to the tangent bundles of the noncommutative spaces, and recover from this algebraic formulation the metric, Levi-Civita connection and related curvature introduced in earlier work. Transformation rules of connections and curvatures under general coordinate changes are given explicitly. A bar involution on the Moyal algebra is discovered, and its consequences on the noncommutative differential geometry are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 81 0 . 43 71 v 1 [ as tr o - ph ] 2 4 O ct 2 00 8 Welcome back , Polaris the Cepheid

For about 100 years the amplitude of the 4 d pulsation in Polaris has decreased. We present new results showing a significant increase in the amplitude based on 4.5 years of continuous monitoring from the ground and with two satellite missions.

متن کامل

ar X iv : 0 80 5 . 10 03 v 1 [ m at h . SP ] 7 M ay 2 00 8 GEODESICS ON WEIGHTED PROJECTIVE SPACES

We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.

متن کامل

ar X iv : 0 81 0 . 26 81 v 1 [ m at h . PR ] 1 5 O ct 2 00 8 FROM RANDOM WALKS TO ROUGH PATHS

Donsker's invariance principle is shown to hold for random walks in rough path topology. As application, we obtain Donsker-type weak limit theorems for stochastic integrals and differential equations.

متن کامل

ar X iv : 0 80 5 . 32 59 v 1 [ m at h . A G ] 2 1 M ay 2 00 8 SELF - DUAL PROJECTIVE TORIC VARIETIES

Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008